Forensic Science In The Information Age
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Reliable computer interpretation can address the scientific need for thorough, objective, and
informative analysis of DNA evidence.

Forensic Identification

Ancient societies used distinguishing marks to identify people and their property. During the T’ang
Dynasty, Chinese officials certified documents with handprints.! Babylonians in the pre-Islamic
Sassanid Empire established ownership of lost items through identifying marks.? In the 19th century,
more precise measurements of physical features® and fingerprints“’5 enabled more accurate human
identification and statistical association.®

The 20th century witnessed a flowering of diverse forensic modalities (hair, fiber, glass, ballistics, etc.)

that could connect crime scene evidence with a suspect.” Investigative databases that could solve cold
cases were established in the earliest decades for fingerprints in London and New York and evolved

into DNA databases by the close of the century.8 Today, the success of DNA identification,® coupled

with outsized “CSI effect” expectations,'? have instilled in the modern world a sense of forensic
infallibility, with abiding faith in the power of DNA.

Great Expectations

There are many consumers of forensic information. Police investigate crimes, prosecutors present
evidence that is weighed by judges and juries, while the public funds the forensic enterprise in order to
secure better protection from crime. These societal consumers of crime lab information all assume that:
a) the forensic evaluation process is thorough and objective, and b) the full measure of identification
information has been accurately extracted from the available evidence. These are reasonable
expectations. An incomplete or biased approach that discarded information might be ineffective (not find
the right person), incorrect (implicate the wrong person), or unusable (inadmissible in court).

However, current forensic science practice does not always meet these expectations. The National
Academy of Sciences (NAS) 2009 report on “strengthening forensic science” identified potential flaws or
examiner bias in some methodologies.!! Indeed, comparative bullet lead analysis was found to lack a
sound scientific basis and is no longer used.'? Since DNA evidence interpretation had not consistently
accounted for natural data variation, the federal Scientific Working Group on DNA Analysis Methods
(SWGDAM) issued new 2010 guidelines.’® Recent studies report examination bias in DNA mixture
interpretation'# and a million-fold information loss in the human review of mixture data.'®:16

A thorough and objective evaluation of evidence that yields all the data’s identification information may
be desirable, or even necessary, but is it feasible? Isn’t a “match” between evidence and suspect
inherently limited to just comparing the data features of these two items? And isn’t this “match”
unavoidably biased, since one of the two items is the suspect? If the items either fully “match” or they
don’t, how does one measure the amount of information?


http://www.forensicmag.com/authors/5718

Before the advent of computers and information theory, these might have been challenging questions.
But in the modern age, the questions have workable, generally accepted answers. We next examine
how information science can resolve these fundamental issues in forensic science.

Information Science
Computers and information theory were forged on the scientific battlefields of World War Il. The earliest
electronic computers used probabilistic search to solve the equations that helped build the atomic

bomb."” Information theory and likelihood ratios (LR) cracked the German Enigma code, providing daily

military intelligence on custom-built computers.18 Scientific computing crunched raw data into the
information that won the war, and ushered in our modern world.

Most people like certainty. During cross-examination, an expert withess wants solid fact to provide a
shield of certainty against an onslaught of critical questioning. But science reasons from uncertain data,
not blind faith, and so such certainty is illusory.

Uncertainty rules in nature. DNA differences provide abundant natural variation in biological
populations, with no two (uncloned) individuals alike. Scientific data exhibit laboratory variation, with
random fluctuations occurring between repeated experiments and seen within each measurement. In a
random world, though, these same data are needed to reduce uncertainty and increase our rational
belief in one hypothesis over another.

Uncertainty arises when there is more than one possible explanation. Our scientific belief in a particular
explanation is its probability, a number between 0 and 1. An explanation’s information is related to the
reciprocal of its probability.

A rare event has a small probability, so its reciprocal gives a large information number, reflecting the
considerable surprise experienced when the event happens. The occurrence of a common (high
probability) event does not surprise us at all, and so its low information (the reciprocal of a high
probability is a small number) indicates little or no surprise. Quantifying uncertainty through

probability'%-2? provides the information needed to strengthen forensic science.

Identification Science
A modern identification science must be thorough, objective, and informative. These properties, which
we now consider in turn, make scientific identification less susceptible to legal challenge.

A thorough evidence examination must use all the data. A “model” helps explain observed data. When
data count up how much of a quantity is present, a quantitative model is needed to express those
counts with numbers. Random variation is accounted for by the model’s statistical component. A
computer model uses probability to mathematically assess how well a proposed hypothesis actually
explains the data.

Thoroughness also entails considering all possibilities. Deductive reasoning proceeds forward from a
hypothesis to explain observed data. Inductive reasoning instead starts from the data, and infers causal

hypotheses. This inverse reasoning (from data, back to hypothesis) is done with Bayes’ theorem,?’
which assesses all possible hypotheses and calculates the probability of each one. Most real world
inductive problems (including forensic inference) are complicated and need a computer to solve their
complex equations.

An objective assessment requires that the computer never see a suspect or defendant when evaluating
evidence. That is, when the computer infers the probability of each hypothesis, its deliberation must be
done without any knowledge of what the “answer” should be. Rather, the computer should reach its
unbiased conclusions solely from the available evidence.

The hypotheses considered by the computer will ultimately be compared with known references. With



ballistics evidence, for example, the striations and marks of a crime scene bullet can be explained as
arising from the barrel of a particular firearm. The make and model of a firearm is a possible hypothesis
for the bullet evidence. Thorough inference considers all feasible firearm models, assigning each model
a probability that accounts for its prevalence and how well it explains the bullet mark measurements.
Performed objectively, only the bullet data is used.

When comparing evidence to a known suspect, we want to quantify the amount of information in a
match. How much more does one hypothesis explain the evidence than alternative hypotheses?

Equivalently,22 how much more probable is a match between evidence and known than mere
coincidence? This balance of probabilities is the match statistic (or “LR”) that weighs the evidence
supporting the hypothesis, relative to all other alternatives. In accordance with the Federal Rules of
Evidence (FRE) Rule 403, LR match information is able to assess the probative value of a hypothesis
and factor away prior prejudices.
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Figure 1: DNA genotype. A genetic locus has two DNA
sentences, one from each parent. An STR allele is the num-
ber of repeated words. A genor;{]pe at a locus is a pair of
alleles, as in the 8, 9 shown in the diagram. Since many
alleles allow for a great many allele pairs, a person’s geno-

type is relatively unique.

Genotype Inference

The genotype is the central concept of DNA identity. At a genetic locus (some location on a
chromosome), a person has two copies of DNA, one inherited from each parent (Figure 1). The DNA
content is called an “allele”. A person’s genotype is their allele pair at a locus.

A genetic locus having very many alleles can help identify people. For example, 20 alleles lead to over
200 allele pairs for a genotype. Testing a dozen such loci leads to quintillions of possible genotypes,
more than enough to statistically distinguish billions of people.

Human identification uses short tandem repeat (STR) alleles, DNA sentences of repeated short words.
The number of repeated words determines the allele. An allele’s DNA molecule can be amplified and
sized on a DNA sequencer, producing an allele peak. An STR allele is specified by peak position, since
molecule length is proportional to the number of repeats. The amount of allele DNA is proportional to
peak height.

When the two alleles in a person’s genotype are the same size, the data show one tall peak. With two
different alleles, the data show two peaks. Inferring a genotype from reference data is easy, since there
is only one allele pair explanation for the peak data. Starting from the hundreds of possible allele pairs
in a population, reference data quashes that uncertainty down to a single answer, generating
considerable identification information.

A DNA mixture contains two or more individuals. This combination of allele pairs from different people



leads to evidence data more complex than just one or two peaks. Therefore, there is usually more than
one genotype explanation, since different allele pair combinations can account for the peak data. These
multiple explanatory possibilities create genotype uncertainty. DNA interpretation must thoroughly and
objectively examine the mixture data, assigning accurate probabilities to genotype allele pair
hypotheses.
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Figure 2: Mixture data. A mixture sample has genotype
ol?ele pairs from two or more contributors. Shown is a
DNA signal (green curve)] having four peaks at the Penta
D locus. The Eorizonrol x-axis ingicotes an allele’s DNA
molecule length, while the vertical y-axis measures a
peak height that reflects the allele’s DNA quantity.
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Figure 3: Genotype inference. The computer explores all
possible genotype combinations, trying to explain the
observed data peak pattern. Better explanations lead to
a higher genotype probability. Shown is an explanation
that combines different amounts of allele pairs {colored
bars) from three contributors.

Case Example

Two years ago in Stafford County, a Virginia woman awoke to find a man she knew on top of her. She
screamed, he fled. DNA from her underpants showed a mixture containing multiple contributors (Figure
2). Comparison was made with the DNA of a sergeant from the nearby Quantico Marine base, but
human review following the 2010 SWGDAM guidelines was inconclusive. The DNA evidence was

therefore reinterpreted using a validated probabilistic genotyping system15 in order to determine a
match statistic.

Starting from the Promega PowerPlex® 16 amplification signals stored in an Applied Biosystems 3100®
sequencer file format, the DNA data was uploaded to a Cybergenetics TrueAllele® Casework
interpretation computer system. The computer processed the evidence item’s data under different



scenarios: two versus three contributors, with or without assuming the victim was a contributor, and so
on. To ensure objectivity, the computer was given no knowledge of the sergeant’s genotype, and so the
evidence examination was unbiased.

A thorough genotype explanation should account for the peak height data pattern observed at a locus.
The computer can suggest an allele pair assignment for each contributing genotype. The software then
expands the height of a contributor’s allele pair in proportion to how much DNA came from that
contributor. The computer adds up these weighted allele pair components to construct an allele peak
pattern whose hills and valleys might explain the DNA data (Figure 3). Since “a better fit’s more likely it”,
genotype values that form more explanatory patterns receive higher probability.

The computer thoroughly considered hundreds of thousands of genotype explanations. Those
explanations that better explained the data conferred higher probability to their genotype allele pairs.
Genotype possibilities that could not explain the data received very low probability. Intermediate
genotype explanations received intermediate probability. When done deliberating, the computer wrote
into a database its inferred genotypes, providing a probability distribution for each locus and contributor
(Figure 4).

The computer’s objectively inferred mixture evidence genotype was then compared with the suspect’s
genotype. This comparison was done relative to a black population genotype (representing all
conceivable alternative people) in order to form a match statistic. The LR match statistic reports on how
much the evidence changed our belief from a random match to a specific suspect match. There was a
four-fold gain in probability at the Penta D locus, as seen visually (Figure 5). Multiplying together the
match scores at 15 genetic loci, and accounting for human relatedness, a match between the victim’s
underpants and the sergeant was 284 million times more probable than coincidence.

The computer’s DNA mixture interpretation and reported match statistic were introduced as evidence at
the court martial. The direct and cross-examination of the expert witness took under an hour. The
defendant was found guilty on all charges and sentenced to three years in the brig and a dishonorable
discharge from the Marine Corps.
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Figure 4: Genotype probability. The evidence genotype for
one of the unknown contributor genotypes, objectively
inferred without any knowledge of the suspect. Shown are
probability bars for eight allele pairs that account for
about 99% of the progoblliry. Virtually no probability is
assigned to the hundreds of other allele pair possibiliies at
this ?ocus, since they cannot adequately explain the data.
The data imposes a constraint that reduces the number of
possible genotype values; fewer possibilities increases
genotype information.
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Figure 5: Match statistic. DNA match information tells us
how much more the suspect matches the evidence than a
random person. With computer inference done, we now
note that the suspect’s genotype at locus Penta D is the allele
pair 10,13. The LR focuses our attention on fjust this one
genolype value ged box), taking the ratio of the evidence
genotype probability (8%) to the population genotype proba-

ility (2%). This ratio gives us a match statistic of 4, express-
ing the information gain from the Penta D locus data.

Forensic Applications

Last year the author filed case reports with computer match statistics in over 75 criminal cases. The
offenses include sexual assault, homicide, weapons or drug possession, bank robbery, and home
invasion. Expert testimony was given in state, federal, military, and foreign courts. Most cases involved
police or prosecutors needing a match statistic for arrest or court on DNA evidence where human
review was inconclusive or unpersuasive. The DNA was usually crucial evidence, with the defendants
typically convicted of their crimes. Several cases involved the defense assessing actual or post
conviction innocence.

The courts have accepted computer DNA evidence interpretation. The Pennsylvania appellate Superior
Court upheld the 2009 Commonwealth v. Kevin Foley homicide conviction and computer admissibility in

a published precedential ruIing.23 In the Real IRA Massereene Barracks attack, which killed two
unarmed British soldiers, the Northern Ireland court admitted computer methodology into evidence and

used the DNA match statistic in its ruling.24 These legal precedents are based on extensive scientific

validations of the probabilistic genotype method'®16 and regulatory approval.25 Computer interpretation
is not novel, just a useful implementation based on established mathematics and science.

Highly informative computer-inferred evidence genotypes can help investigators find criminals and
missing people. However, some government DNA databases institutionalize the low information yield of
human interpretation methods. One crime lab study showed that out of fifty DNA mixtures, human
review did not produce a match statistic on half the evidence items, whereas the computer succeeded
every time. Other crime lab studies show that even when human review of mixture data does yield a
match statistic, the computer’s numbers are (on average) about a million times greater. More
informative genotypes translate into a more powerful investigative database.

Investigative DNA databases of information-rich genotypes were used for identifying victim remains in

the World Trade Center disaster.?® The statistical computer inferred probabilistic genotypes from victim
remains evidence, and from missing person kinship and personal effects data; the investigative

database then compared these genotypes to form matches having LR statistics.?” Probabilistic
genotypes are written into the ANSI/NIST forensic data exchange standards (sect. 18.020-18.021 ),28
and are specifically allowed by SWGDAM interpretation guidelines (par. 3.2.2).'3

Path Forward



An information age demands information. We expect a Google search to return thorough, objective, and
informative results, using the best available probability computer model methods. Our human minds ask
questions, and we rely on the computer to calculate the best answers. Whether cracking a code,
diagnosing disease, piloting a plane, or working on Wall Street, our lives and livelihoods depend on
computer thought. Apprehending criminals through forensic intelligence is no exception—we want the
most informative computers working 24/7 to provide protection.

DNA laboratories are now bringing computers on board to extend their forensic examiners’ analytic
capability. A scientist can organize evidence and frame forensic questions; robots and computers can
then automate the mechanics. A forensic scientist can incorporate informative DNA match statistics
from complex mixture calculations into their case reports, and provide testimony in court. Experts excel
at human activities, while computers are better calculators. Even before their crime labs deploy
computer interpretation, police investigators and trial attorneys can rely on the private sector to deliver
computer processing, case reports, and expert withess services.

The NAS report identified ways to strengthen forensic science. In addition to sound scientific data, the
criminal justice system relies on thorough, objective, and informative interpretation of such data. DNA
has paved the way once more and shown how reliable computer interpretation can address these
scientific needs, complementing human cognition. Forensic science is now embracing the information
age, extending the human mind with objective and informative computer solutions.
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